








allows for vessel inspections, may provide an additional op-
portunity for identifying forced labor and collecting informa-
tion that could be used to adaptively improve the model (19).
In addition, the vessel-level forced labor risk information

makes it possible to implement and improve market interven-
tions in the sector. Model outputs could provide new information
for market approaches aimed at informing businesses and con-
sumers, and in turn could generate market pressure to reduce
forced labor and improve working conditions in fisheries. Sea-
food distributors could use model outputs for targeted due dili-
gence within their supply chains, adding a new piece of
information to existing supply chain tools (20). Social network
analysis, leveraging satellite-detected transshipment events (21),
could be used to assess risk within at-sea supply chains to put
pressure on vessels and companies to operate responsibly. Cer-
tification programs such as Marine Stewardship Council or Fair
Trade and risk rating resources such as Seafood Slavery Risk
Tool could use the model outputs as an additional data source
for assessing risk within specific fisheries and to incentivize im-
proved working conditions as a condition for certification. Fur-
thermore, consumers may be willing to pay a premium for
seafood that is free of forced labor, which would give seafood
companies an incentive to demand clean seafood from its value
chain. Producers that economically benefit from such premiums
could direct funds to improve working conditions. Although
existing literature suggests that there is limited evidence that
seafood producers economically benefit from eco-label price
premiums (22–25), some studies indicate that fair-trade pro-
grams have resulted in economic benefit for producers (26).
Given the mixed results of such programs, preferential market
access for vessels that are not engaged in forced labor practices
may be a more powerful incentive for producers.
The potential applications of this model should be viewed

within a broader context of policies aimed at addressing forced
labor and very poor working conditions. Targeted end-of-pipe
vessel-level interventions should not act in isolation, nor should
they redirect attention away from addressing the underlying
structural drivers of forced labor in fisheries. The processes that
lead to labor abuses are complex (27), and the eradication of
forced labor in fisheries will also require policies that address
poverty, depleted fish stocks, and disenfranchisement of vul-
nerable populations such as migrant workers. Policies that aim to
rebuild fish stocks and reduce subsidies could reduce the de-
mand for cheap labor. Interventions should address challenges
that migrant workers face, including the lack of access to formal
credit, educational opportunities, social programs, and alterna-
tive economic opportunities (28). Governments should also
provide legal labor rights protection for migrant workers who
sometimes do not enjoy the same protections as domestic
workers (29). By addressing underlying drivers, the risk of
shifting vulnerable workers away from fisheries and into other
high-risk sectors such as agriculture could also be mitigated. The
appropriate vessel-level intervention will also depend on whether
or not crew are actually working involuntarily. While ILO forced
labor indicator presence does imply the use of forced labor, it
does not guarantee involuntary or forced labor since crew may
choose to work in poor conditions (2, 27). Indeed, a spectrum of
human rights violations ranging from poor working conditions to
servitude have been documented in the seafood industry (6, 27). In
cases with forced labor violations, responses should be severe and in
accordance with international policy; in cases when crew are
working voluntarily but in abusive conditions, responses should aim
to improve working conditions. These interventions should com-
plement, but not substitute for, on-the-ground initiatives that pro-
vide victim assistance and promote ethical recruitment practices,
investigative journalism, and on-vessel worker-voice monitoring that
provides technology for crew to report real-time working conditions

(30). Leveraging multiple approaches can triangulate information
and provide more effective interventions.
We emphasize that that this work should be seen as an initial

proof of concept, and that model predictions must be used
cautiously given the ethical and practical consequences of acting
against certain vessels or fisheries, especially with the unavoid-
able presence of both false negatives and false positives. Because
the training dataset of positive vessels is based on a limited
number of documented forced labor cases in the fisheries that
have received the most attention, the sample is not random and
may not fully represent the range of vessel types that use forced
labor, resulting in sample selection bias. The model may there-
fore understate the relative risk among vessels with characteris-
tics underrepresented in the training set of positive cases, but
also overstate relative risk among vessels with characteristics
overrepresented in the training set of positive cases. Neverthe-
less, while there are inherent tradeoffs when using machine
learning to classify risk, biases also exist in risk-detection systems
based on expert knowledge and judgment (31). Finally, vessels
may change their use of forced labor, and consequently their
behavior, from year to year due to a number of factors. These
factors may include changes in labor policy and enforcement,
changes in vessel ownership or supply-chain oversight, supply of
migrant laborers from marginalized areas, market conditions and
demand for targeted species, condition of the underlying tar-
geted fish stocks, and evolving modus operandi of the trans-
national organized crime networks that often support forced
labor (32). Forced labor should therefore be viewed as a dy-
namic challenge that is constantly evolving, and which may
cause the risk classification of vessels to change from year to
year. Assessing vessel-level risk beyond this study’s analysis
period of 2012 to 2018 would ideally involve retraining the
model using more recently reported cases of forced labor and
generating updated classifications based on more recent
vessel-level behavior data. While we hope that the initial re-
sults presented here can inform the broader discussion around
forced labor in fisheries and perhaps even inform more tar-
geted intervention design, we stress that ongoing work will be
needed to continuously update, validate, and improve the
model with better data in order to make it a more actionable
tool for practitioners.
Our approach contributes to an emerging literature that uses

remote sensing to shed light on social and human rights chal-
lenges. Remote sensing has been used to detect forced labor in
other sectors, but that literature uses satellite imagery of static
infrastructure such as brick kilns and fish processing plants
known to be associated with forced labor (33, 34). Satellite im-
agery has also been used to map rural populations in marginal-
ized communities (35) and detect poverty by using nighttime
lighting as an indicator for household wealth (36). We com-
plement this important work by detecting the dynamic be-
havior of individual fishing vessels induced by forced labor
abuses. Finally, we posit that, if forced labor in fisheries can be
detected from satellites, perhaps other forms of human rights
abuses induce observable behavior that can also be remotely
sensed.

Materials and Methods
Data Description.We train the predictive model using vessel monitoring data
from GFW (10). For 16,261 unique longliner, trawler, and squid jigger vessels,
we calculate a number of features on an annual basis from 2012 to 2018 (SI
Appendix, Table S1 and SI Appendix). We call the unit of observation a
vessel-year. These features represent aggregate annual observable vessel
behavior features. We also include vessel characteristic features such as
vessel flag and engine power. This training dataset includes 66,336 vessel-
years of observation. We limit the analysis to these three gear types because
they are the only gears for which we have known or highly suspected cases
of forced labor for vessels that carry AIS, could be matched to GFW data, and
broadcast sufficient and reliable AIS positions. We exclude vessels that
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broadcast less than 100 AIS messages per year, appear to be offsetting their
vessel position latitude/longitude coordinates, broadcast multiple names per
hour, or broadcast more than 95% of their messages from within the
Taiwanese, Japanese, Chinese, Republic of Korea, or Democratic People’s
Republic of Korea exclusive economic zones (EEZs). The high level of vessel
congestion within these EEZs greatly reduces AIS coverage and limits our
ability to calculate features for these locations (10). The full training dataset
is provided in Dataset S1 (SI Appendix).

To identify which vessel-years should be labeled as positive for using
forced labor, we developed a comprehensive database of 193 reported cases
of forced labor that occurred on specific fishing or refrigerated fish cargo
(“reefer”) vessels. We define a reported case of forced labor as a situation
that displays one or more of the ILO forced labor indicators (SI Appendix,
Fig. S1 and SI Appendix). In addition, these cases must also have one or more
of the following case features: 1) eyewitness account, 2) nonofficial inves-
tigation (e.g., by an NGO through investigative journalism), 3) official in-
vestigation (e.g., by a government enforcement body), 4) arrests made, 5)
charges filed, 6) conviction made, or 7) penalties sanctioned. Recognizing
that the presence of ILO forced labor indicators does not guarantee in-
voluntary or forced labor, and also recognizing that cases often simul-
taneously exhibit a number of different forced labor indicators, we
endeavor only to detect forced labor broadly as specified by any of the 11
ILO indicators of forced labor, and do not distinguish between whether
vessels may be using bonded labor or slave labor or which of the 11 in-
dicators a particular vessel may be exhibiting. We found reported cases
through extensive gray and scientific literature review, and also through
discussions with NGOs including Liberty Shared, Environmental Justice
Foundation, and Greenpeace Asia. For each case, we collect information
on vessel identity including vessel name, Maritime Mobile Service Identity
(MMSI) number, IMO number, call sign, information on when the vessel
was thought to be conducting that behavior, and the source for the in-
formation (Dataset S2 and SI Appendix).

The three most commonly observed ILO indicators relate to servitude
labor: 1) abusive working and living conditions, 2) restriction of move-
ment, and 3) isolation (SI Appendix, Fig. S1 and SI Appendix). Debt
bondage was only reported in one vessel case. While the information
provided in case reports is likely not comprehensive of the conditions
aboard these vessels, these indicators suggest that the model is primarily
trained on forced labor cases indicative of servitude rather than bonded
labor. Additionally, only four cases reported that convictions had been
made and penalties sanctioned. This may reflect insufficient reporting of
case information in publicly available reports, but may also reflect in-
sufficient policy and legal institutions for prosecuting cases of forced la-
bor in fisheries. Either of these insufficiencies would indicate a lack of
appropriate deterrence for preventing vessels from using forced labor in
fisheries. According to AIS data, the MMSI numbers associated with sev-
eral of these vessels continued to operate in years following when they
were labeled as positive (SI Appendix, Fig. S1 and SI Appendix). In 2018, 13
of 23 (57%) vessels with reported forced labor were still operating, with
11 of those 13 vessels (85%) being classified as high-risk. While this in-
dicates these vessels were not taken out of commission following forced
labor reports, it remains unclear if this is because sanctions were not
imposed or if the vessel simply changed ownership in order to continue
operations.

We label vessel-years as positive if the vessel is contained in our database
of reported forced labor cases and if the year is the single year prior to when
the case was reported, yielding n = 21 unique vessel cases. Since most case
reports do not specify the time period during which abuses took place, we
assume the abuses took place in the year prior to the report. While we will
refer to this as our baseline model variation, this is an assumption we also
test through a robustness check, where we vary our assumption to be that
vessels should be labeled as positive in the 2 y prior to the report, in the 3 y
prior, etc. We detail this robustness check below. For vessels included in the
forced labor vessel database, any year not labeled as positive is excluded
from the training dataset since we hypothesize these vessel-years have a
higher chance of existing than other vessels, although we are uncertain due
to the dynamic nature of forced labor on board fishing vessels (SI Appendix,
Fig. S1 and SI Appendix). We later use the model to make risk predictions for
these excluded vessel-years. Vessels for which we have no information and
which are not included in the forced labor database are unlabeled, meaning
they could be free of forced labor or could have forced labor that has not yet
been detected (SI Appendix, Fig. S2 and SI Appendix). These labels allow us
to perform PU learning using the training dataset (described in the follow-
ing section). To apply positive labels, we matched our database of forced
labor vessel cases to the GFW training dataset using MMSI number, IMO

number, call sign, and/or vessel name, and for the year prior to which the
case was reported. In cases where the only vessel identification information
that could be matched was vessel name, we conservatively disregard
matches that use common vessel names, including Viking, Lucky Star, and
Greenstar. SI Appendix, Fig. S2, summarizes the number of labeled and
unlabeled vessel-years by fishing gear and year and positive training data set
label year assumption. A total of 35 reefer vessels were also matched and
were used to generate a model feature that describes the number of sus-
pected transshipment events that a particular vessel had with other vessels
in the forced labor database.

Importantly, since these forced labor cases exhibit varying levels of evi-
dence and occurred within various areas of legal jurisdiction, we are not
implicating these vessels with any specific crimes or actions. Rather, we are
labeling these vessels as high-risk vessels that warrant further scrutiny
according to the ILO forced labor indicators. Case information was often
sparse and did not usually indicate whether labor was involuntary or not, so
we endeavored to consistently capture which ILO forced labor indicators
were present. Vessel identification information sometimes included MMSI
number, IMO number, or call sign, but often just included vessel name. In these
cases, we searched for names in online databases such as MarineTraffic.com
and endeavored to find matching vessels from the same flag as was reported
in the case. Since this may not always provide a perfect match to the vessel in
question, we again are not implicating these vessels with any specific crimes
or actions. We also acknowledge that there is an inherent time lag be-
tween when a vessel may be using forced labor, when that vessel gets
caught or when witnesses emerge, and when the case is reported to the
public. This means that we may be observing fewer cases in recent years,
which could lead the model to underpredict risk in these recent years.
Given the sparsity of case information and the difficulty in matching
vessels, the authors call for increased transparency for publishing de-
tailed forced labor case reports and for increased use of AIS devices,
MMSI numbers, and IMO numbers.

The data for each model feature come from one of three sources: 1) di-
rectly observed using AIS data; 2) inferred using the GFW fishing classification
algorithm, which classifies individual AIS messages by gear type and labels
them as either fishing or not fishing; or 3) vessel characteristics that come
from either a known vessel registry (where available) or from the GFW vessel
characterization algorithm (where vessel registry information is not avail-
able). The GFW fishing classification algorithm determines which gear type a
fishing vessel uses and whether or not that vessel is fishing. For longliners and
trawlers, the algorithm uses a convolutional neural network that has clas-
sification F1 scores, which combine precision and recall, of 0.93 for drifting
longlines and 0.96 for trawlers (10). For squid jiggers, the algorithm uses a
heuristic that labels vessels as fishing for squid if the vessel is more than
10 nautical miles from shore and moving at less than 1.5 kn for more than
4 h at night. This heuristic is reliable since squid jiggers have a distinctive
behavior in which they fish only at night and only while moving very
slowly (37). The GFW vessel characterization algorithm is a separate
convolutional neural network that is trained using data from known
vessel registries and predicts vessel length (R2 = 0.9 across all gear types),
engine power (R2 = 0.83), gross tonnage (R2 = 0.77), and crew size (R2 =
0.73) (10). For the training dataset used in this analysis, 59% of vessel-
years have known vessel length from registries, 58% have known gross
tonnage, 48% have known engine power, and 16% have known crew
size; the remainder of the parameters not contained within registries are
obtained from the GFW vessel characterization algorithm. We include
vessel characteristics as model features in our baseline model variation,
although we test the sensitivity of our results to the inclusion of these
features in a robustness check detailed below.

Model Development and Testing. We use machine learning to develop a
predictive model that discriminates between fishing vessels that are at high
risk of using forced labor from those vessels that are not. We consider a
number of predictive features that measure vessel behavior (e.g., average
duration of voyages, average number of hours spent fishing per day, and
number of suspected transshipment events with other vessels) as well as static
vessel characteristics (e.g., vessel flag, gear type, and engine power; SI Ap-
pendix, Table S1, and SI Appendix). The ideal training dataset to build this
model would include a list of vessels that are known to have used forced labor
and a list of vessels that are known to have not used forced labor, with both
lists being randomly sampled from these two classes of vessels. However, al-
though we compiled a list of vessels that were reported to use forced labor
(i.e., “positive” cases), we do not have a list of vessels that we know did not
use forced labor (i.e., “negative” cases). Upon discussion with a number of
human rights experts, there is not currently a certification or transparency
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scheme that can reliably guarantee that a specific vessel is not using forced
labor. Even with existing schemes, vessels often self-select into these schemes
and are therefore not necessarily representative of the larger fleet of vessels.
Therefore, any vessel that was not reported to use forced labor is either truly
clean of forced labor or simply was not caught (i.e., unlabeled cases). Our
analysis therefore is an example of PU classification learning (12). If we had
both positive and negative vessels in the training dataset, we would not need
to use a PU learning approach and could instead use traditional supervised
learning methods. More traditional supervised learning methods may more ac-
curately be able to discriminate between positive and negative vessels because
these methods could leverage behavior from known negative vessels, rather
than relying on behavior from vessels that are unlabeled and thus could either
be negative or positive (e.g., ref. 28). In future research, the model could po-
tentially be improved by incorporating confirmed negative cases that could be
obtained from improved social responsibility certification schemes, or from
randomly sampled in-person vessel inspections. These types of inspections could
also increase our number of positive training cases. However, these types of
inspections would be expensive and logistically challenging to conduct, and
could provide risks to both those conducting the inspections as well as to the
crew aboard inspected vessels.

PU learning has a relatively nascent literature, but there are a number of
methods for dealing with this problem that include 1) training a traditional
classification model using positive cases and assuming unlabeled cases are
negatives; 2) biased learning, where unlabeled cases are treated as negative
cases with an unknown amount of class-label noise; and 3) training a tra-
ditional classification model using positive cases and assuming unlabeled
cases are negatives, and then adjusting the predictions by a constant factor
using the known true conditional probability of being positive (38). Because
we do not know the true fraction of positive vessels, we focus on the first
two of these PU approaches.

The first approach, building a traditional naïve classifier, is the most
straightforward, but also leads to biased predictions. Although the
probability of being positive should theoretically be biased by a constant
factor across all cases and the relative probabilities across cases should
be ranked correctly, this only applies if the observed positive cases were
chosen at random from all positive cases (38). We know that this as-
sumption does not hold in our case.

The second approach, biased learning, aims to address the class label noise
due to unlabeled positive cases. One biased learned technique leverages
bagging (bootstrap resamplingwith replacement), wherebymanymodels are
trained using all positive cases and a down-sampled number of unlabeled cases.
Predictions are then calculated as the average across model runs (i.e., bags)
(39). This reduces the relative importance of unlabeled cases that should
actually be labeled positive, and has been shown to perform better than
training a traditional classifier (40). Each iteration of the mode leverages
a base classifier that can be any supervised learning method (12). Much of
the PU literature uses support vector machines (SVMs) as the base classifier,
although random forests have been shown to perform as well as SVMs or
better in some cases (41).

In order to determine the best method for our application, we test four
model variations: 1) traditional naïve classifier using an SVM, 2) classifier
trained using biased learning with SVM base classifier and the bagging
approach, 3) traditional naïve classifier using a random forest, and 4) clas-
sifier trained using biased learning with random forest base classifier and
the bagging approach.

For each random forest variation, we use the ranger R package and specify
1,000 trees and use the default values for the remaining hyperparameters
(42). For each SVM model variation, we use the kernlab R package with a
radial basis function and the default hyperparameter values (43). For vari-
ations that use the bagging technique, we build up to 100 different classi-
fiers that are trained using up to 100 bags of the data that each have all
positive cases and a random down-sampled subset of unlabeled cases
resampled with replacement. The number of unlabeled cases included in
each bag is a hyperparameter that is tuned (referred to as the down-
sampling ratio) and varies from the number of positive cases up to five
times the number of positive cases. We calculate the average model score
across all bag classifiers and use this as the final model score.

Given our extremely limited training dataset of known positive cases, we
do not have sufficient data to reserve a completely separate testing portion
of the dataset for model validation. Instead, we use a 10-fold cross-validation
(CV) analysis to tune hyperparameters for these four different model vari-
ations and to evaluate the performance of these variations to choose the
best model. Importantly, to avoid data leakage, we do not split forced labor
vessels or media sources across analysis and assessment folds. We suspect
that all forced labor vessels described by a particular media source may

behave similarly, so we do not want to train and test the model on these
similarly behaving vessels. Similarly, individual vessels may behave similarly
across separate years, so we do not want to train and test the model using
the same vessel across multiple years.

During CV, we optimize three hyperparameters simultaneously: 1) the
threshold for determining the cutoff used to classify a vessel as a high risk; 2)
for model variations with bagging, we tune the number of unlabeled vessels
that are used in each bag, which is a down-sampling ratio of the number of
positive vessels; and, 3) for model variations with bagging, we tune the
number of bags. Hyperparameters are tuned by maximizing the mean of a
modified F1 score across folds while minimizing the SD and aiming for model
simplicity. The modified F1 score has been shown to be an appropriate
model performance metric in the PU setting (44). It incorporates recall (the
fraction of positive vessel-years that are correctly identified as positive) and
detection prevalence (the percentage of vessel-years that are labeled as
positives by the model), and can be calculated using only observed known
positives and is thus appropriate for the PU learning environment. It is de-
fined as recall squared divided by detection prevalence, and is proportional
to the square of the geometric mean of recall and precision (precision is the
fraction of correctly identified positives out of all identified positives) (45).
The score therefore equally weights the importance of minimizing both type
1 and type 2 errors. We calculate the averages and SDs for recall, detection
prevalence, and modified F1 score across folds for all model variations. Since
we assess these metrics using CV, this gives us a sense of how the model will
perform when predicting out of sample. We do not look at other traditional
model performance metrics such as precision, area under the precision–recall
curve, or area under the receiver operating characteristic curve, since these
are known to be biased in the PU setting (46).

Within the model building procedure, we include a data-preprocessing
step that is done both within the CV procedure and within the final model
building procedure. During CV, the preprocessing is always completed using
only the analysis data, and not using the assessment data, in order to avoid
data leakage. The preprocessing is defined as follows: 1) impute missing
numeric values using K nearest neighbors based on Gower’s distance, with
k = 5 neighbors, and imputing based on the gear, flag, and vessel length
predictors (47, 48); 2) transform numeric predictors using Box–Cox trans-
formation (49); 3) create dummy variables for all categorical predictors; 4)
remove numeric predictors that have zero variance or are highly sparse
(i.e., the number of unique values divided by the total number of samples is
less than 10) and unbalanced (i.e., the frequency of the most prevalent value
is higher than 19 times the frequency of the second most prevalent value); 5)
remove numeric predictors that have a correlation with other predictors
greater than 0.75; 6) center numeric predictors to have a mean of 0; and 7)
scale numeric predictors to have an SD of 1. The preprocessed data for the
full model training dataset are summarized in Fig. 1.

SI Appendix, Fig. S3, shows the recall, detection prevalence, and modified
F1 score and recall of the various model variations during 10-fold CV and
using the optimized threshold. We see that the base classifiers without
bagging show large SDs for the modified F1 score, and so we eliminate these
models as candidates. Next, we see that model performance stabilizes at 50
bags and above, although the mean and SD with 100 bags are the most
stable across down-sampling ratios, with similar mean performance between both
random forest and SVM. To maximize model simplicity, we therefore set the
down-sampling ratio to 1. For 100 bags and a down-sampling ratio of 1, the
random forest has the highest modified F1 score. We therefore select our op-
timized model variation to be random forest with 100 bags and a down-
sampling ratio of 1. This specification has the following mean performance
across the 10 folds: modified F1 score, 4.3; recall, 0.92; and detection
prevalence, 0.2.

Using the optimized model building procedure determined using CV, we
then train the final model using the entire training dataset and the optimized
hyperparameters. SI Appendix, Fig. S4, summarizes the number of positive
and negative classifications predicted by this model, broken apart by
whether the original training dataset label was positive or unlabeled. Using
the baseline model assumption, the model correctly classifies 20 of 21 pos-
itive vessel-years and also identifies 12,000 new high-risk vessel-years that
were previously unlabeled. SI Appendix, Fig. S5, shows the feature importance,
averaged across bags, for the final model. For each bag, the feature importance
for that random forest classifier is the unbiased corrected Gini index, a measure
of how well individual features do at reducing node impurity when they are
used as the splitting feature in a decision tree. Importantly, feature importance is
relative and does not provide information about the directionality of each
feature’s ability to accurately identify risk.
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Robustness Checks. In order to test the sensitivity of our results, we perform
two robustness checks: 1) given that vessel characteristics in the GFW data-
base are often inferred rather than directly known from vessel registries, we
run model variations that do not use any vessel characteristics as model
features; 2) given that, for vessels with reported forced labor, it is usually
unknown exactly which years forced labor may have been occurring prior to
the report, we run model variations that make different assumptions about
how many years prior to the report to label as positive. For each robustness
check, we replicate the entire model training and prediction process as
outlined above. We again use CV to tune the key hyperparameter of the
cutoff threshold for determining which vessels should be labeled as high-risk.
We focus on using the random forest model variation with 100 bags and an
undersampling ratio of 1 in order to directly compare the results from these
robustness checks with those from our baseline model assumptions.

For the first robustness check that tests the sensitivity of our results to the
use of vessel characteristics as model features, we run variations of the model
that omit the model features of engine power, tonnage, vessel length, crew
size, and AIS device type. The model variation that includes vessel charac-
teristics as model features is our baseline model variation. For the second
robustness check, we vary the number of years in the training dataset that are
labeled as positive for the vessels that are reported to have used forced labor.
A value of 1 is the baselinemodel variation andmeans that only the year prior
to a vessel being reported for forced labor is labeled as positive, a value of 2
means that the 2 y prior to being reported are labeled as positive, etc. Across
the range of robustness checks we have 23 unique positive vessel cases, an
increase from 21 unique cases in the baseline variation, since some vessels
were not observed in the year prior to being reported (case information for
all 23 cases vessels is provided in SI Appendix, Fig. S1, and SI Appendix). The
CV model performance results are shown in SI Appendix, Fig. S6, which
summarizes detection prevalence, modified F1 score, and recall across all
model variations including the baseline variation. The predicted final model
results are shown in SI Appendix, Fig. S7, which summarizes the sensitivity of
our main results to different model variations: the fraction of correctly
identified true positives, fraction of vessel-years identified as positives,
fraction of vessels identified as positives, number of crew working on posi-
tive vessels, number of vessel-years identified as positives, and the number
of vessels identified as positives across all model variations include the

baseline variation. Model variations that leverage vessel characteristics, even
though these characteristics are inferred for many vessels, consistently have
higher modified F1 scores than variations that do not use these character-
istics. There is not a clear pattern for which year assumption yields the
highest F1 score, although detection prevalence declines as the year as-
sumption increases. As the year assumption increases and more positive
vessel-years are used in model training, this may impose a more restrictive
constraint on what similar unlabeled vessel-years should look like, which
may decrease detection prevalence. Therefore, for the results presented in
the Results and also in Fig. 2, we present the minimum and maximum value
ranges from SI Appendix, Fig. S7, using model variations that include vessel
characteristics and all year assumption model variations. We also present
results using only two significant digits.

Given the sensitivity of our results to the assumption of which vessel-years
to label as positive, we encourage reports that detail forced labor cases to
provide as much information as possible regarding when suspected viola-
tions were taking place. We also encourage the use of more detailed public
vessel registries that can provide known vessel length, engine power, ton-
nage, and crew size in order to further refine model features.

Data Availability.All CSV files necessary to reproduce this analysis are found in
the supporting information. All CSV files and R code necessary to reproduce
this analysis are available in GitHub (https://github.com/emlab-ucsb/slavery-
in-fisheries) and Zenodo (DOI: 10.5281/zenodo.3635980).
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